二次函数顶点坐标(二次函数所有公式汇总)

怎样判断二次函数的顶点坐标

二次函数的顶点坐标公式是:y=a(x-h)²+k(a≠0,a、h、k为常数),顶点坐标为(h,k),对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax²的图像相同,当x=h时,y最大(小)值=k。

(1)一般式:y=ax2+bx+c(a,b,c为常数,a≠0),则称y为x的二次函数。顶点坐标(-b/2a,(4ac-b^2)/4a)。

(2)顶点式:y=a(x-h)2+k或y=a(x+m)^2+k(a,h,k为常数,a≠0)。

(3)交点式(与x轴):y=a(x-x1)(x-x2)。

(4)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0。

二次函数基本定义:

一般地,把形如y=ax2+bx+c(a≠0),(a、b、c是常数)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项。x为自变量,y为因变量。等号右边自变量的最高次数是2。

交点式为y=a(x-x1)(x-x2)(仅限于与x轴有交点的抛物线),与x轴的交点坐标是A(X1,0)和B(x2,0)。

二次函数的顶点坐标是什么

二次函数的一般式是y=ax^2+bx+c,当a>0时开口向上,函数有最小值.当a<0时开口向下,则函数有最大值。而顶点坐标就是(-b/2a,4ac-b^2/4a)这个就是把a、b、c分别代入进去,求得顶点的坐标.4ac-b^2/4a就是最值。

扩展资料:

函数图象

对称关系

对于一般式:

1、y=ax2+bx+c与y=ax2-bx+c两图像关于y轴对称

2、y=ax2+bx+c与y=-ax2-bx-c两图像关于x轴对称

3、y=ax2+bx+c与y=-ax2+bx+c-b2/2a关于顶点对称

4、y=ax2+bx+c与y=-ax2+bx-c关于原点中心对称。(即绕原点旋转180度后得到的图形)

对于顶点式:

1、y=a(x-h)2+k与y=a(x+h)2+k两图像关于y轴对称,即顶点(h, k)和(-h, k)关于y轴对称,横坐标相反、纵坐标相同。

2、y=a(x-h)2+k与y=-a(x-h)2-k两图像关于x轴对称,即顶点(h, k)和(h,-k)关于x轴对称,横坐标相同、纵坐标相反。

3、y=a(x-h)2+k与y=-a(x-h)2+k关于顶点对称,即顶点(h, k)和(h, k)相同,开口方向相反。

4、y=a(x-h)2+k与y=-a(x+h)2-k关于原点对称,即顶点(h, k)和(-h,-k)关于原点对称,横坐标、纵坐标都相反。(其实1、3、4就是对f(x)来说f(-x),-f(x),-f(-x)的情况)。

参考资料来源:百度百科-二次函数

二次函数顶点坐标怎么求

二次函数顶点坐标求法如下:

二次函数的一般式是y=ax^2+bx+c,当a>0时开口向上,函数有最小值.当a<0时开口向下,则函数有最大值。而顶点坐标就是(-b/2a,4ac-b^2/4a)这个就是把a、b、c分别代入进去,求得顶点的坐标.4ac-b^2/4a就是最值。

相关介绍

对称关系

对于一般式:

1、y=ax2+bx+c与y=ax2-bx+c两图像关于y轴对称。

2、y=ax2+bx+c与y=-ax2-bx-c两图像关于x轴对称。

3、y=ax2+bx+c与y=-ax2+bx+c-b2/2a关于顶点对称。

4、y=ax2+bx+c与y=-ax2+bx-c关于原点中心对称。(即绕原点旋转180度后得到的图形)。

对于顶点式:

1、y=a(x-h)2+k与y=a(x+h)2+k两图像关于y轴对称,即顶点(h, k)和(-h, k)关于y轴对称,横坐标相反、纵坐标相同。

2、y=a(x-h)2+k与y=-a(x-h)2-k两图像关于x轴对称,即顶点(h, k)和(h,-k)关于x轴对称,横坐标相同、纵坐标相反。

3、y=a(x-h)2+k与y=-a(x-h)2+k关于顶点对称,即顶点(h, k)和(h, k)相同,开口方向相反。

4、y=a(x-h)2+k与y=-a(x+h)2-k关于原点对称,即顶点(h, k)和(-h,-k)关于原点对称,横坐标、纵坐标都相反。(其实1、3、4就是对f(x)来说f(-x),-f(x),-f(-x)的情况)。

二次函数的顶点坐标公式是啥

(1)一般式:y=ax2+bx+c(a,b,c为常数,a≠0),则称y为x的二次函数。顶点坐标(-b/2a,(4ac-b^2)/4a)

(2)顶点式:y=a(x-h)2+k或y=a(x+m)^2+k(a,h,k为常数,a≠0).

(3)交点式(与x轴):y=a(x-x1)(x-x2)(又叫两点式,两根式等)

扩展资料:

二次函数的基本表示形式为y=ax²+bx+c(a≠0)。二次函数最高次必须为二次,二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。

二次函数表达式为y=ax²+bx+c(且a≠0),它的定义是一个二次多项式(或单项式)。

如果令y值等于零,则可得一个二次方程。该方程的解称为方程的根或函数的零点。

一般地,把形如(a、b、c是常数)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项。x为自变量,y为因变量。等号右边自变量的最高次数是2。

顶点坐标交点式为(仅限于与x轴有交点的抛物线),与x轴的交点坐标是和。

注意:

“变量”不同于“未知数”,不能说“二次函数是指未知数的最高次数为二次的多项式函数”。“未知数”只是一个数(具体值未知,但是只取一个值),“变量”可在一定范围内任意取值。

在方程中适用“未知数”的概念(函数方程、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数——也会遇到特殊情况),但是函数中的字母表示的是变量,意义已经有所不同。从函数的定义也可看出二者的差别。

参考资料:百度百科-二次函数